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Abstract— This paper entails the application of the energy
shaping methodology to control a flexible, elastic Cosserat rod
model. Recent interest in such continuum models stems from
applications in soft robotics, and from the growing recognition
of the role of mechanics and embodiment in biological control
strategies: octopuses are often regarded as iconic examples of
this interplay. The dynamics of the Cosserat rod, here modeling
a single octopus arm, are treated as a Hamiltonian system
and the internal muscle actuators are modeled as distributed
forces and couples. The proposed energy shaping control design
procedure involves two steps: (1) a potential energy is designed
such that its minimizer is the desired equilibrium configuration;
(2) an energy shaping control law is implemented to reach the
desired equilibrium. By interpreting the controlled Hamiltonian
as a Lyapunov function, asymptotic stability of the equilibrium
configuration is deduced. The energy shaping control law is
shown to require only the deformations of the equilibrium
configuration. A forward-backward algorithm is proposed to
compute these deformations in an online iterative manner.
The overall control design methodology is implemented and
demonstrated in a dynamic simulation environment. Results
of several bio-inspired numerical experiments involving the
control of octopus arms are reported.

Index Terms— Cosserat rod, Hamiltonian systems, energy-
shaping control, soft robotics, octopus

I. INTRODUCTION

In recent years, the octopus has become an iconic example

of the potential opportunities that lie in the use of soft, com-

pliant materials in robotic applications, to enhance dexterity,

safety, and body reconfiguration abilities [1], [2]. Indeed, the

octopus and other soft-bodied animals are able to coordinate

virtually infinite degrees of freedom into a rich repertoire of

complex manipulation and motion patterns, from reaching,

grasping, fetching, to crawling and swimming [3]–[5]. Re-

cent proof-of-concept soft robots continue to highlight the

need for theoretical and algorithmic control approaches that

are specifically tailored to such distributed and compliant

mechanical systems. This provides the motivation for the
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work reported in this paper where we apply energy shaping

control techniques to control a virtual octopus arm.

The dynamics of the arm are modeled using the Cosserat

theory of elastic rods [6]. In contrast to typical rigid link

models of classical robotics, Cosserat rod models capture,

through linear and angular momentum balances, the (one-

dimensional) continuum and distributed nature of elastic

slender bodies deforming in space. These models account

for all modes of deformation – bend, twist, stretch, shear –

induced by external and internal forces and couples.

Our control-oriented viewpoint is to interpret the rod as a

Hamiltonian system [7], [8] where the potential energy is ex-

pressed in terms of strains. This allows us to apply an energy

shaping control design procedure that involves two steps: (1)

a potential energy is designed such that its minimizer is the

desired static equilibrium (encoding the octopus’ goal, e.g.,

reaching an object); (2) an energy shaping control law is

implemented to achieve the desired equilibrium. In a standard

manner, by interpreting the controlled Hamiltonian as a

Lyapunov function, the equilibrium configuration is shown

to be asymptotically stable. The energy shaping control

methodology has a rich history in robotics [9], [10]. Apart

from our work, this method has recently been applied to the

control of soft manipulators based upon a finite dimensional

rigid link model [11].

The proposed procedure has several useful features. It

yields a simple closed-form formula for the control law

which is easily integrated in a realistic simulation. The

modified potential energy and the controlled Hamiltonian

have useful physical interpretations as modified stress-strain

relationships. Our simple control law provides a benchmark

for more sophisticated forms of controls where additional

constraints due to sensing and actuation may be taken

into account. The algorithms described in this paper are

demonstrated in a computational CyberOctopus which is

being developed to simulate soft body mechanics coupled

with distributed sensory-motor infrastructure operating in a

realistic physical environment. The mechanics component of

the CyberOctopus is simulated with Elastica, an existing

software for the numerical modeling and simulation of

Cosserat rods [12], [13] in 3D space. Several reaching motion

patterns inspired by results reported in the octopus’ literature

are demonstrated in numerical experiments.

The outline of the remainder of this paper is as follows.

The static and dynamic equations of the classical planar

Cosserat rod theory are introduced in Sec. II. The section

includes a self-contained discussion of an optimal control-

type formulation of the rod statics, and the Hamiltonian for-
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Fig. 1: Modeling an octopus arm as a special Cosserat rod

mulation of the rod dynamics. The proposed energy-shaping

control design procedure appears in Sec. III. The details

of the simulation platform and the results of the numerical

experiments appear in Sec. IV and Sec. V, respectively. The

conclusions and directions for future research are briefly

described in Sec. VI.

II. COSSERAT ROD MODEL OF A SINGLE ARM

Let {e1, e2} denote a fixed orthonormal basis for the

two-dimensional lab frame1. In its reference undeformed

configuration, the rod is of length L0 and lies parallel to

the e1 axis. The independent coordinates are time t ∈ R

and the arc-length of the centerline s ∈ [0, L0]. The partial

derivatives with respect to t and s are denoted as ∂t and ∂s,

respectively. The state of the rod is described by the vector-

valued function q (Fig. 1)

q(s, t) :=





x(s, t)
y(s, t)
θ(s, t)





where r = (x, y) ∈ R
2 denotes the position vector of

the centerline, and the angle θ ∈ R defines a material

frame spanned by the orthonormal pairs {a, b}, where a =
cos θ e1 +sin θ e2, b = − sin θ e1 +cos θ e2. The vector a is

normal to the cross section: it captures the shear deformations

whereby the cross section ‘shears’ relative to the tangent of

the centerline.

A. Statics – an optimal control viewpoint

The statics of the rod require consideration of the rod’s

potential energy denoted as V . It is a functional of the strains,

i.e., curvature, stretch and shear. Strains are related to the

local frame {a, b} through ∂sr = ν1a+ν2b, where ν1 and ν2
represent stretch and shear, respectively. The curvature κ :=
∂sθ completes the triad of deformations w := (ν1, ν2, κ) that

fully characterizes the rod’s kinematics

∂sq = f(q, w) :=





ν1 cos θ − ν2 sin θ
ν1 sin θ + ν2 cos θ

κ



 (1)

1Although all the considerations of this paper are applicable to the general
three-dimensional (3D) Cosserat rod models, we provide the exposition for
two-dimensional (2D) models. The notation is simpler and the key ideas are
communicated more easily to a broader audience.

and potential energy

V(q) =

∫ L0

0

W (w(s)) ds

where W : (ν1, ν2, κ) 7→ R is the energy stored in the rod

because of its mechanical deformation. Under the assumption

of a perfectly elastic material characterized by a linear stress-

strain relation, W takes the quadratic form

W =
1

2

(

EA(ν1 − ν◦1 )
2 +GA(ν2 − ν◦2 )

2 + EI(κ− κ◦)2
)

(2)

where E and G are the material Young’s and shear moduli,

A and I are the cross sectional area and second moment

of area, and ν◦1 , ν◦2 , κ◦ are the intrinsic deformations that

determine the rod’s shape at rest. If ν◦1 ≡ 1, ν◦2 ≡ 0, κ◦ ≡ 0,

then the rest configuration is a straight rod of length L0.

The statics of the rod admit an interesting optimal control

re-formulation; c.f., [14], [15]. Any static configuration of

the rod is a stationary point of the potential energy V with

the constraint expressed by (1)

minimize
w(·)

V =

∫ L0

0

W (w(s)) ds, (3)

subject to ∂sq =f(q, w), with q(0) = q0, q(L0) = q1

Here, q0 and q1 are the states of the rod at the base (s = 0)

and at the tip (s = L0). Desired static configurations of

the rod are obtained via the application of the Pontryagin’s

Maximum Principle (PMP). Write the control Hamiltonian

as

H(q, λ, w) = λ⊺f(q, w) −W (w) (4)

where λ(s) = (λ1(s), λ2(s), λ3(s))
⊺ ∈ R

3 is the costate

vector. The Hamilton’s equations are given by

∂sq =
∂H

∂λ
= f(q, w) (5)

∂sλ =−
∂H

∂q
=









0
0

{

− ν1(−λ1 sin θ + λ2 cos θ)
+ ν2(λ1 cos θ + λ2 sin θ)

}









(6)

The optimal deformations are obtained by pointwise maxi-

mization of the Hamiltonian (4). For the quadratic choice of
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the stored energy function W , the maximization yields




EA(ν1 − 1)
GAν2
EIκ



 =





λ1 cos θ + λ2 sin θ
−λ1 sin θ + λ2 cos θ

λ3



 (7)

Remark 1: In the Cosserat rod theory, Eq. (5)-(12) are the

well known static equations. The costate variables (λ1, λ2)
and λ3 represent, respectively, the internal forces and couple

in the laboratory frame. In the material frame, the internal

forces and couple are denoted as (n1, n2,m) := (λ1 cos θ+
λ2 sin θ,−λ1 sin θ + λ2 cos θ, λ3). Equation (7) provides a

relationship between the deformations and these internal

forces and couple. More generally,

ni =
∂W

∂νi
, i = 1, 2, m =

∂W

∂κ

are referred to as the constitutive laws or the load-strain

relationships that characterize the material of the rod.

B. Dynamics – the Hamiltonian form

In a dynamic setting, the state q = (x, y, θ) is a function of

both s and t. Let p = M∂tq denote the momentum, where

M = diag(ρA, ρA, ρI) is the inertia matrix and ρ is the

material density. The kinetic energy is expressed as

T =
1

2

∫ L0

0

(

ρA((∂tx)
2 + (∂ty)

2) + ρI(∂tθ)
2
)

ds

The Hamiltonian is the total energy of the system, H(q, p) =
T (p) + V(q).

In the absence of external forces and couples, the dy-

namics of the rod are described by Hamilton’s equations of

classical mechanics

dq

dt
=

δH

δp
= M−1p

dp

dt
= −

δH

δq
= −

δV

δq

(8)

The evolution equation (8) requires the specification of

boundary conditions at s = 0 and s = L0 as well as initial

conditions at t = 0. These together with the explicit form of

the dynamic equations of the rod, appear in Sec. IV.

III. CONTROL DESIGN

The Hamiltonian control system is expressed as

dq

dt
=

δH

δp

dp

dt
= −

δH

δq
+ G(q, p)u

In an octopus, the control term G(q, p)u represents the

distributed forces and torques generated by various kinds of

muscles, e.g. longitudinal, transverse, and oblique muscles.

In this paper, we take G(q, p) to be the identity, inferring

that forces and torques of any magnitude and direction can

be produced by the control vector u. Modeling of realistic

anatomy, geometry, and mechanics of the internal muscle

architecture is the subject of ongoing work.

The control objective is to design a feedback control law

for u to manipulate the arm to perform a variety of control

tasks: (i) displace and stabilize the tip of the rod (s = L0) to

a specified target location q∗ ∈ R3 in an environment with

obstacles; (ii) wrapping the arm around an object in order to

grab it. These objectives are closely inspired by the specific

control behaviors observed in octopus arm movements.

A. Energy shaping control law

The idea is to shape the potential energy of the rod, using

techniques from the port-Hamiltonian control theory [9],

[10], [16]. For this purpose, suppose one can design a

potential energy, denoted as Vd, whose minimizer (static

equilibrium) achieves the desired control objective2. Then the

following proposition gives an explicit form of the control

law:

Proposition 3.1: Let Vd(q) denote a desired potential en-

ergy function with minimum at a configuration q̄. Then the

control law

u = −
δ

δq
(Vd − V)− γM−1p, γ > 0 (9)

renders the point (q̄, 0) asymptotically stable.

A sketch of the proof (adapted from [16]) is provided next.

The control law (9) serves to modify the potential energy of

the system to Vd

dq

dt
=

δH̄

δp
,

dp̄

dt
= −

δH̄

δq
− γM−1p (10)

where

H̄(q, p) = T (p) + Vd(q)

is the modified control Hamiltonian. Now, H̄(q, p) ≥ 0 for

all (q, p), H̄ = 0 only at (q̄, 0) and along a solution trajectory

of (10) we have

dH̄

dt
= −γ

〈

dq

dt
,
dq

dt

〉

≤ 0

where the inner product above is taken in the L2 sense. This

shows that the total energy of the system is non-increasing.

By an application of the LaSalle’s theorem, the solution con-

verges to the largest invariant subset of
{

(q, p) | dH̄
dt = 0

}

which is (q̄, 0). A rigorous application of LaSalle principle

also requires one to show that the trajectories of the nonlinear

semigroup of (10) are precompact or relatively compact in

an appropriate function space. This remains to be verified.

Remark 2: A justification of the small dissipation term

in (10) can be provided in variety of ways, for example it

can be physically assimilated to material viscoelastic effects.

It remains to determine the desired potential energy. This

is the subject of the next section.

2The design of the desired potential energy is the subject of the following
sub-section.
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B. Design of desired potential energy

In order to design the desired potential energy, we build

upon the optimal control re-formulation of the rod statics (3).

Specifically, we consider the following modified version of

the problem:

minimize
w(·)

J =

∫ L0

0

W (w(s)) + µgrasp(s)Φgrasp(q(s)) ds

+ µtipΦtip(q(L0), q
∗)

subject to ∂sq = f(q, w), with q(0) = q0, q(L0) free;

and Ψj(q) ≤ 0, j = 1, 2, . . . , Nobs

(11)

With µgrasp = µtip = 0, Nobs = 0 and a prescribed q(L0), this

problem reduces to the original problem (3). In the control

settings of this paper, these are chosen to satisfy various

types of control objectives:

1) If there are obstacles in the environment, these are

described by the state inequality constraint Ψj(q) ≤ 0.

2) The terminal cost function Φtip(·) is used to penalize the

deviation of the arm tip from a specified target point q∗;

µtip is a non-negative regularization parameter. Such a

model is useful for example to mimic an octopus arm

reaching a prey in its environment.

3) The state-dependent running cost function Φgrasp(·) and

the weight function µgrasp(·) are motivated by the grasp-

ing control task. In performing this task, a portion of

the octopus arm wraps around and grasps an object in

the environment.

The regularization parameter µtip and the weight function

µgrasp are designed according to the underlying task; a

representative guide is provided in Table I. Additional details

including explicit formulae for the functions Φtip,Φgrasp,Ψ,

and µgrasp used in this work appear in Sec. V.

Following [17], the constrained optimal control problem

(11) is solved by augmenting the states q with Nobs additional

states, denoted as q̂j for j = 1, . . . , Nobs. The model of each

additional state is defined as

∂sq̂j = cj(q) = max(Ψj(q), 0), q̂j(0) = 0

Note that cj(q) is non-negative for each j. The terminal

value q̂j(L0) is referred to as the performance index. It

indicates the degree to which the j-th inequality constraint

has been violated along the length of the rod. To minimize

the performance index, the terminal cost function is modified

as

Φ̂(q(L0), q̂(L0)) = µtipΦtip(q(L0), q
∗) +

Nobs
∑

j=1

ξj q̂j(L0)

where ξj > 0 is the weight for the performance index q̂j(L0).

The Hamilton’s equations of the state and the pointwise

maximization condition for the Hamiltonian are exactly the

same as before. The equations for costates are modified

to now also include additional terms on account of the

constraints

∂sλ = −
∂Ĥ

∂q
+

Nobs
∑

j=1

ξj
∂cj(q)

∂q
=: g(s, q, λ, w) (12)

where the modified control Hamiltonian Ĥ is written as

Ĥ(s, q, λ, w) = H(q, λ, w) − µgrasp(s)Φgrasp(q) (13)

The costate equation (12) is accompanied by the transversal-

ity condition

λ(L0) = −
∂Φ̂

∂q
(q(L0), q̂(L0)) = −µtip

∂Φtip

∂q
(q(L0), q

∗) (14)

Suppose the problem (11) is solved to obtain the static

solution q̄. Then one possible approach to determine the

desired potential energy function Vd is as follows:

Vd(q) =
1

2

∫ L0

0

(

EA(ν1 − ν̄1)
2 +GA(ν2 − ν̄2)

2

+EI(κ− κ̄)2
)

ds (15)

where (ν̄1, ν̄2, κ̄) represent the optimal deformations corre-

sponding to the solution q̄ of the control problem (11). The

quadratic formula may be replaced by any positive definite

functional such that Vd(q) > 0 for all q 6= q̄, and Vd(q̄) = 0.

Using this choice yields the following explicit form of the

energy shaping control law

u = −





∂
∂s

((

cos θ − sin θ
sin θ cos θ

)(

EA(ν̄1 − 1)
GAν̄2

))

∂s(EIκ̄) +GAν1ν̄2 − EAν2(ν̄1 − 1)



− γ∂tq

(16)

Physically, this procedure is akin to artificially replacing

the intrinsic strains of (2) with the optimal deformations

(ν̄1, ν̄2, κ̄). The energy shaping form of the controlled Hamil-

tonian dynamics generates the control inputs (which may be

interpreted as muscle forces and couples) to bring the rod to

its new equilibrium configuration.

C. Algorithm

In summary, the proposed design procedure involves two

steps: (i) In Step 1, the static deformations are obtained by

solving the optimization problem (11); (ii) In Step 2, the

energy shaping dynamic control law (16) is implemented to

achieve the desired deformation.

There are a number of ways to numerically solve the

Hamilton’s equations. Offline approaches include the use of

a shooting method to solve the two point boundary value

problem (BVP) [18], or using continuation techniques [19].

Once the optimal deformations are obtained, the control law

is implemented directly using (16).

Envisioning the control of a CyberOctopus which interacts

with a dynamic environment, an online approach is more

appropriate. In this case, Step 1 is implemented to solve

the BVP iteratively, interspacing every iteration with Step 2

directly within the simulation of the dynamic model. For the
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TABLE I: Design of Parameters in (11)

Task µgrasp(s) µtip

Reaching with the tip,
0 µtip > 0

w/ or w/o obstacles

Grasping an object

Any non-negative

piecewise continuous

function of s
µtip = 0

Algorithm 1 Forward-Backward Algorithm

Input: Task (reaching, grasping etc.)

Output: Optimal deformations w̄ = (ν̄1, ν̄2, κ̄)
1: Initialize: deformations w(0), states at base (s = 0) q0
2: for k = 0 to MaxIter do

3: Update forward (1):

q(k)(s) = q0 +

∫ s

0

f(q(k), w(k)) ds

4: Update backward (14), (12):

λ(k)(L0) = −µtip

∂Φtip

∂q
(q(k)(L0), q

∗)

λ(k)(s) = λ(k)(L0)−

∫ L0

s

g(s, q(k), λ(k), w(k)) ds

5: Update deformations (17):

w(k+1) = w(k) + ηk
∂Ĥ

∂w

(

s, q(k), λ(k), w(k)
)

∆t

6: end for

7: Output the final deformations as w̄

iterative solution of the BVP problem, a gradient ascent al-

gorithm is used to update (or learn) the optimal deformations

as follows

dw

dt
= η(t)

∂Ĥ

∂w
(s, q, λ, w) (17)

where η(t) is the update stepsize (or learning rate). For

each t, the states are integrated forward from the initial

condition q0, while the costates are integrated backward from

the terminal condition that depends on the objective (see

Table I. This algorithm is known in literature as forward-

backward algorithm for optimal control [20], [21], and is

presented in Algorithm 1. Convergence results typically

require sufficiently small values of the step size update ηk∆t.

IV. COSSERAT ROD MODEL DISCRETIZATION

The explicit form of the equations of motion of a planar

Cosserat rod [6] are as follows:

∂t(ρA∂tr) = ∂sn+ F

∂t(ρI∂tθ) = ∂sm+ ν1n2 − ν2n1 + C
(18)

where n = n1a+n2b and m are internal forces and couple,

respectively, and u = (F,C) are external forces and couple

per unit length, which are employed here as control variables.

We fix the rod base (s = 0) at the origin while the tip (s =
L0) is free to move. Then, the initial (19) and boundary (20)

conditions that accompany the dynamics (18) are

r(s, 0) = r
◦(s), θ(s, 0) = 0, ∂tr(s, 0) = 0, ∂tθ(s, 0) = 0 (19)

r(0, t) = 0, θ(0, t) = 0, n(L0, t) = 0, m(L0, t) = 0 (20)

where r◦(s) = (s, 0) is the initial position vector.

In all our demonstrations, the arm is initially straight,

undeformed and at rest. In order to mimic the tapered

geometry of an actual octopus arm, we employed a rod with

the variable diameter profile φ(s) = φtips + φbase(L0 − s).
The cross section area and the second moment of the area

are calculated as A = πφ2

4 , I = A2

4π . The arm dimensions

of a live octopus (O. rubescens), such as length and the

diameters along the arm, were measured in a laboratory

environment with the help of camera recordings. Elastic

moduli of biological tissue [22] are used for our simulations.

The simulation parameters are listed in Table II.

The governing equations of the Cosserat rod theory are

solved numerically using our open-source, dynamic, three-

dimensional (3D) simulation framework Elastica [12], [13].

In the context of this work, we constrained all variables

and motions within a prescribed plane, which acts as a

fixed-point space for the dynamics. In Elastica, the rod is

decomposed into (N + 1) vertices hosting translational de-

grees of freedom (r), and N connecting cylindrical segments

hosting rotational degrees of freedom (θ). All spatial op-

erators are discretized using second-order finite-differences.

The resulting discretized system of equations is evolved

in time using a second-order Verlet scheme. Additional

forces and torques, such as those arising from contact with

objects in the environment, are included in this model as

forcing terms, similar to the control u. The method has

been validated against a number of benchmark problems

with known analytical solutions [12]. Moreover, it has been

shown to successfully capture the dynamics of a wide range

of biophysical phenomena from complex musculoskeletal

architectures [13] and bio-hybrid robots [23], [24] to artificial

muscles [25] and meta-materials [26]. Further numerical

details can be found in the above references.

V. NUMERICAL EXPERIMENTS

In the following we demonstrate the capabilities of our

control approach via a set of numerical experiments inspired

by arm reaching motions reported in octopus’ literature.

A. Reaching multiple static targets

Octopuses have been observed [3], [4], [27] to demon-

strate stereotypical reaching and fetching motion, i.e. reach-

ing to a food source by bend propagation and bringing it

back to its mouth by forming a pseudo-joint in its arm.

Inspired by this, our first experiment is conceptualized for

the CyberOctopus elastic arm to mimic this kind of behavior.

Given one or multiple static targets r∗, indicated as orange

spheres, the goal of this numerical experiment is to reach

each target with the tip of the arm one after the other.
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solve optimal control

problem (11) via

any method

desired function Vd = (15)

control law u = (9)

dq

dt
=

δH

δp
,
dp

dt
= −

δH

δq
+ u

r∗ w̄ u

(a) Offline approach

solve optimal control

problem (11) via

Forward-Backward Algorithm

desired function Vd = (15)

control law u(k) = (9)

dq

dt
=

δH

δp
,
dp

dt
= −

δH

δq
+ u(k)r∗ w(k) u(k)

(b) Online approach

Fig. 2: (a) Offline approach. The block on the very left is the first step which takes the target position r∗ as input and

outputs target deformation w̄. The middle block is the second step which constructs u by following the control law (9).

Lastly, the system will be stabilized at the target deformation once the control is applied. (b) Online approach. The two-step

procedure here is similar to (a) except for the fact that the deformations are updated iteratively, and w(k) is used to compute

the energy shaping control u(k).

TABLE II: Parameters

Parameter Description Value

Numerical Simulation

L0 total length of an undeformed arm [cm] 20
φbase base diameter [cm] 2
φtip tip diameter [cm] 0.04
E Young’s modulus [kPa] 10
G shear modulus [kPa] 1

ρ density [kg/m3] 700
γ dissipation [kg/s] 0.01
N discrete number of elements 100

∆t discrete time-step [s] 10−5

Forward-Backward Algorithm

µtip regularization parameter 103

η∆t learning rate 0.01

ξ weight for the performance index 105

The first step is using the forward-backward algorithm to

calculate offline (Fig. 2a) the static configuration, given each

target’s position. To find the static configuration that allows

the tip of the arm to reach the target, we set the terminal

cost in the optimal control problem (11) as

Φtip(q(L0), r
∗) =

1

2
|r∗ − r(L0)|

2 (21)

There is no cost associated with θ(L0) since the angle at

which the tip captures the target is not of concern. The

transversality condition (14) becomes

λ(L0) = µtip





x∗ − x(L0)
y∗ − y(L0)

0





After computing the target configuration, we apply the ex-

plicit muscle forces and couples of (16), which smoothly

bring the arm into its target shape. When the tip reaches the

first target, another set of muscle forces and couples based

on next target is applied. Therefore, the arm reaches each

target one by one, as shown in Fig. 3a-c.

B. Reaching a moving target

Next, we consider reaching a moving target so that r∗

is now an explicit function of time, mimicking the capture

of a swimming prey [28], [29]. This scenario sets the

stage for future investigations of capture strategies in more

complex settings, for example accounting for preys’ evasion

maneuvers. Thus, a method that continuously updates the

desired arm configuration q̄(t) in response to dynamic targets

becomes necessary, and we resort to the online control

method of Fig. 2b.

In this test case, the target position is displaced as r∗(t) =
r∗(k∆t), where k is the iteration number. The target is

assumed to be moving at a constant velocity of 1 [cm/s],

towards the −e1 direction. It is to be noted that the controller

for the arm does not know the velocity explicitly, instead it

is assumed to know the position of the target at each time.

This can be justified since the octopus can use visual cues

and chemical signals to estimate the location of the prey.

As can be seen in Fig. 3d-f, the tip of the arm catches

the moving target, gradually morphing though a sequence

of desired shapes.

C. Reaching with obstacles

Challenged with physical constraints, octopuses are known

to adapt to the environment to accomplish complex tasks

like reaching to a target [30], or solving puzzles [31]. Here,

we consider the presence of solid obstacles to mimic an

octopus operating in an anisotropic environment. The target

is assumed to be static. We follow the method described in

Sec. III-B to find optimal static configurations that respects

the inequality constraints associated with hard boundaries,

here represented by two spheres located in the arm plane.

Thus, the inequality constraints are

Ψj(q(s)) =

(

φj + φ(s)

2

)2

− |rj − r(s)|2, j = 1, 2

where φj is the diameter of the j-th sphere and rj is its

center position. The online control method (Fig. 2b) is then

3918

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2021 at 02:09:42 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)
R

E
A

C
H

IN
G

S
T

A
T

IC
 T

A
R

G
E

T
S

(d) (e) (f)

R
E

A
C

H
IN

G

M
O

V
IN

G
 T

A
R

G
E

T

(g) (h) (i)

R
E

A
C

H
IN

G
 

w
/ 

O
B

S
T

A
C

L
E

S

G
R

A
S

P
IN

G

S
T

A
T

IC
 T

A
R

G
E

T (j) (k) (l)

Fig. 3: Arm reaching control tasks. (a-c) The arm is tasked to reach two different locations one after the other, mimicking

an octopus fetching a food source and bringing it back to its mouth. (a) Targets are located at r∗ = (9, 9) and (0, 2) [cm]

(axes normalized by undeformed arm length L0) and indicated as red crosses. In (b – arm front view) and (c – octopus 3D

rendering) targets are represented as orange spheres. Optimal arm configurations are depicted in green, while actual arm

shapes evolution in time are depicted in purple. (d-e) The arm is tasked to reach a moving target, initially located at (12, 9)
[cm]. (g-i) The arm is tasked to reach a static target accounting for the presence of two identical solid spheres (grey) of 8
[cm] diameter, and located at (5.4, 6) and (15.4, 6) [cm]. The position of the static target is r∗ = (9, 9) [cm]. (j-l) The arm

is tasked to wrap around a static sphere of diameter 4 [cm] centered at (6, 3) [cm].

applied to calculate the energy-shaping control. The results

of algorithm and simulations are shown in Fig. 3g-i, which

illustrate how the tip avoids the boundaries as the arm

complies with the obstacles, sliding through them to finally

reach the target.

D. Grasping an object

For the final experiment, a target object is provided for

the octopus arm to grasp. The running cost is designed as

Φgrasp(q(s)) = dist(Ω, r(s))

where Ω denotes the boundary of the object and dist(·, ·)
calculates the distance between the boundary and the point

r(s). This object is also treated as an obstacle, modeled as

an inequality constraint Ψ, as in Sec. V-C. We choose the

following weight function

µgrasp(s) = µtipχ[0.4L0,L0]
(s)

where χ
[0.4L0,L0]

(·) denotes the characteristic function of

[0.4L0, L0]. The weighted running cost together with in-

equality constraint causes the distal portion of the arm, start-

ing from s = 0.4L0, to grasp the target without penetrating it.

The results of the energy shaping control law are illustrated

in Fig. 3j-l.

Remark 3: In order to better understand the temporal

performance of our control method, we plot the distance

between the arm and the target position in Fig. 4. Some

Reinforcement Learning (RL) and adaptive control based
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Fig. 4: Time-series plot of the distance to target (normalized

by L0). Plotted here is the distance between the arm tip and

the target positions for experiments A-C, and the averaged

(weighted by µgrasp) distance between the arm and the bound-

ary of the target for experiment D. For experiment A (orange

line), the change of target at 1.8 [s] is reflected by the jump.

For all four cases, the distance to target smoothly approaches

zero, indicating a stable equilibrium of the system.

algorithms are known to result in oscillations around the

target. Compared with the manipulator results of RL based

methods [32], [33], our proposed energy shaping control

method offers the system a stable equilibrium, as well as

fast computation of control.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have used the Cosserat rod theory

to model a flexible octopus arm in a plane. Hamiltonian

formulation of the dynamics of the rod is exploited to

synthesize an energy-shaping control law that stabilizes the

rod to a predefined deformed state. We have shown that

an optimal control formulation yields a systematic way to

compute desired static configuration. This also enables us

to tackle obstacles. An iterative forward-backward algorithm

is proposed so that it can be used online to calculate the

energy-shaping control in the dynamic simulation of the

rod. Numerical results demonstrate efficacy of this control

scheme. As a direct extension, this idea can be applied

to the general 3D case. In this work, a simplistic model

of actuation is assumed. Future work will consider more

realistic muscle actuation models, to solve manipulation

problems in a biophysically realistic fashion.
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