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Abstract— In this paper, we use the optimal control method-
ology to control a flexible, elastic Cosserat rod. An inspiration
comes from stereotypical movement patterns in octopus arms,
which are observed in a variety of manipulation tasks, such
as reaching or fetching. To help uncover the mechanisms
underlying these observed morphologies, we outline an optimal
control-based framework. A single octopus arm is modeled as
a Hamiltonian control system, where the continuum mechanics
of the arm is modeled after the Cosserat rod theory, and
internal, distributed muscle forces and couples are considered as
controls. First order necessary optimality conditions are derived
for an optimal control problem formulated for this infinite
dimensional system. Solutions to this problem are obtained
numerically by an iterative forward-backward algorithm. The
state and adjoint equations are solved in a dynamic simulation
environment, setting the stage for studying a broader class of
optimal control problems. Trajectories that minimize control
effort are demonstrated and qualitatively compared with ex-
perimentally observed behaviors.

Index Terms— Cosserat rod, optimal control, maximum prin-
ciple, soft robotics, octopus, Hamiltonian systems

I. INTRODUCTION

A. Background and Objectives

Over the past few decades, the optimal control paradigm

has been increasingly used to explain and understand dy-

namic phenomena in biological systems. Examples range

from game theoretic models of population dynamics [1],

[2] to testing optimality hypotheses for collective motion in

starling murmurations [3]–[5], or the minimum-jerk hypoth-

esis for movement planning [6]–[9]. Through a mixture of

experimental data analysis and theoretical modeling, these

approaches often reveal deep insights into the underlying

mechanisms at play [9], [10]. In this work, we take a similar

route to examine the problem of octopus arm movement.

Flexible octopus arms are excellent candidates for study-

ing the intricate interplay between continuum mechanics

and sensorimotor control. As opposed to articulated limbs

in humans, octopus arms are soft and possess a complex

muscular architecture that provides exquisite manipulation
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control. The muscles are independently innervated by motor

neurons along the arm enabling a rich repertoire of deforma-

tions – stretch, shear, bend, and twist. However, despite their

virtually infinite degrees of freedom – and thus having many

options to carry out a single task – octopuses are observed

to engage in certain (task-specific) stereotypical movement

strategies. In experimental studies [11]–[13], these strategies

are broadly categorized into two groups.

(i) Reaching pattern – bend propagation: For the task

of reaching to a fixed target (Fig. 1a), the arm creates

a bend at the base of the arm and propagates that bend

toward the tip [11]. It was later showed that these waves

are not mere whip-like mechanical waves [14], [15] due

to the flexible arm structure, rather the bend propagation

is achieved by actively creating waves of muscle activation

signals [12]. Electromyogram (EMG) recordings of muscle

activation reveals association of muscle contraction with the

traveling bend. Ex-vivo experiments seem to suggest that

these movement patterns may actually be encoded in the

neural circuitry of the arm itself [16].

(ii) Fetching pattern – creation of pseudo-joints: The

octopus typically employs a different strategy for the scenario

of fetching food to its mouth. In this case, the arm behaves

like an articulated limb [13], [17] (see Fig. 1a), creating

dynamic pseudo-joints at three locations along the arm –

proximal, medial, and distal. The medial joint is the most

prominent one, and forms at the location where two waves

of propagating muscle activation collide.

The objective of the present paper is to introduce an

optimal control framework, associated numerical algorithms,

and software tools to systematically investigate potential

optimality bases of these stereotypical movement strategies.

We are particularly interested in understanding the traveling

wave phenomena observed in experimental studies. The

framework introduced here is seen as a first step towards

an inverse optimality analysis of the observed behaviors.

B. Contributions

The dynamics of a soft arm are modeled using the Cosserat

rod theory [18]–[20]. Internal muscle forces and couples,

when considered as control inputs, give rise to a control

system in an infinite-dimensional state space setting. Since

the observed stereotypical arm movements occur primarily

in-plane [11], we restrict our modeling to planar settings,

leading to a control system described by six nonlinear PDEs.

We propose an optimal control problem associated with

this control system. The Pontryagin’s Maximum Principle

(PMP) is used to derive the six adjoint PDEs for the costate
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(b)(a)
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Fig. 1: (a) The octopuses have been observed to exhibit bend propagation (for reaching) and elbow formation (for fetching).

The bend propagation is actively achieved by propagating muscle actuation, illustrated by blue color; green represents the

unactuated portion of the arm. (b) A schematic of the planar Cosserat rod model.

variables. The PMP is also used to obtain the (open-loop)

optimal control input.

The resulting two-point boundary value problem is nu-

merically solved in an iterative manner, referred to here as

the forward-backward algorithm. The forward path, or the

Cosserat dynamical equations are solved using the existing

software tool Elastica [19], [21], [22]. A custom solver is

implemented to simulate the backward path or the costate

equations. The deviation from optimality is utilized to adjust

the control in an iterative manner so as to achieve optimality.

The numerical solver is applied to three test cases related

to the reaching and the fetching movement patterns. Simula-

tion results are used to qualitatively compare with observed

wave propagations or elbow forming.

C. Paper Outline

The remainder of this paper is organized as follows:

In Sec. II, the Cosserat rod model and dynamics in the

planar case are introduced and an optimal control problem

is formulated. The solution to the optimal control problem,

including the forward-backward algorithm and the numerical

methods are described in Sec. III. Results of numerical

experiments appear in Sec. IV. The paper is concluded in

Sec. V.

II. PROBLEM FORMULATION

A. Dynamic modeling of an arm as a Cosserat rod

Let {e1, e2} denote a fixed orthonormal basis for the two-

dimensional laboratory frame. Time t ∈ R and arc-length s ∈
[0, L0], L0 being the length of the undeformed rod, represent

the two independent variables. The partial derivatives with

respect to t and s will be denoted by the subscripts (·)t and

(·)s, respectively.

The state of the rod is described by the vector-valued

function q(t, s) = (r(t, s), θ(t, s)) where r = (x, y) ∈ R
2

denotes the position vector of the centerline, and the angle

θ ∈ R defines the material frame spanned by the orthonormal

pairs {a, b}, where a = cos θ e1 + sin θ e2, b = − sin θ e1 +
cos θ e2 (see Fig. 1b). The vector a is normal to the cross

section. The deformations w = (ν1, ν2, κ), stretch, shear,

and curvature, are related to the local frame {a, b} through

rs = ν1a + ν2b and θs = κ. Finally, p(t, s) = Mqt(t, s)

is used to denote the momentum variable where M is the

mass-inertia density matrix.

The Hamiltonian formulation requires specification of the

kinetic energy T and the potential energy V of the rod as

follows:

T (p) =
1

2

∫ L0

0

pTM−1p ds, V(q) =

∫ L0

0

W (w) ds

where W : w 7→ R is referred to as the stored energy

function of the rod. A quadratic stored energy function,

which leads to a linear stress-strain relationship, is used

in this work. The total energy function or the Hamiltonian

H(q, p) := T (p) + V(q) yields the Hamilton’s equations of

the rod dynamics in the classical Cosserat theory [18], [20].

The generalized state of the rod is denoted as

z(t) := (q(t, ·), p(t, ·)) ∈ Z, t ∈ [0, T ]

An appropriate choice of function space is Z =
H1([0, L0];R

3) × L2([0, L0];R
3) equipped with the appro-

priate boundary conditions. The dynamics of the Hamiltonian

control system are expressed as follows:

dz

dt
(t) = (J −R)

δH

δz
+ G(z(t))u(t) =: f(z(t), u(t)) (1)

where z(0) is the initial condition, J is the skew-symmetric

structure matrix
(

0 1

−1 0

)

, and R =
(

0 0
0 ζ1

)

is the dissipation

matrix, ζ > 0 is a damping coefficient, modeling viscoelastic

effects in the rod [19]. The term G(z(t))u(t) on the right

hand side is used to model the effect of the distributed

internal muscle forces and couples. The functions u(·) ∈ U

are called control inputs. Here U is the set of all measur-

able functions u(·) : [0, T ] → U, where U is a suitable

function space called the control space. We take this as the

L2([0, L0];R
3) space. The modeling of G is complicated and

depends on the muscle type details of the octopus. In this

paper, we make the simplifying assumption G(z(t)) ≡ ( 0
1
).

The explicit form of the six partial differential equations

in the model (1) appears in Appendix I.

B. An optimal control problem

Both sterotypical movement patterns introduced in Sec. I

involve reaching a given target point qtarget ∈ R
3. Even if

realistic muscle constraints were considered (they are ignored
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here), there would exist a large number of potential strategies

to achieve the objective. Optimal control appears to be a

natural choice to obtain a unique strategy. This is done

through formulating the following free endpoint optimal

control problem:

minimize
u

J (u) =

∫ T

0

L(z(t), u(t)) dt+Φ(z(T ))

subject to (1) and a given z(0, s)

(2)

Here the end point z(T ) = (q(T ), p(T )) is free and penalizes

the cost Φ associated with the underlying task, for example

the distance from the arm tip to the designated target point.

Note that a free endpoint problem is considered as opposed

to a fixed endpoint problem due to the ease in algorithmic

implementation as described in Sec. III-B.

The choice of the cost function is problem dependent. In

this paper, a quadratic model is assumed for the control cost

and the elastic potential energy is assumed for the state-

dependent cost

L(z, u) =
1

2
‖u‖2L2 + χ1V(q) (3)

where the weighting parameter χ1 > 0 is used to penalize

the deformation of the arm. The terminal cost is used in place

of a fixed endpoint constraint

Φ(z(T )) = χ2Φtip(q(T, L0), q
target) (4)

where the function Φtip measures the distance between the

arm tip and the target point qtarget, and χ2 > 0 is a suitably

chosen regularization parameter.

Remark 1: Careful analysis is needed regarding the con-

trollability aspect of this infinite dimensional system. The

Lie algebra rank condition or otherwise known as the Chow-

Rashevsky theorem for finite dimensional systems [23]–[25]

typically does not hold for infinite dimensional systems, and

one needs additional assumptions, e.g. [26], [27]. Moreover,

existence of the first order Pontryagin’s Maximum Principle

(PMP) type optimality conditions in the infinite dimensional

settings is non-trivial. A few attempts have been made to

show generalized PMP conditions for infinite dimensional

systems with additional assumptions [5], [28], [29]. However,

the scope of this paper is not to address these questions,

rather to characterize optimal trajectories for a soft arm

manipulation task, in a quest to explain experimentally

observed behaviors. We will therefore proceed assuming that

the controllability and PMP optimality conditions hold.

III. OPTIMAL CONTROL SOLUTION

A. The maximum principle

The costate is denoted as ξ(t) := (µ(t), γ(t)) ∈ Z∗, t ∈
[0, T ]. The control Hamiltonian function1 H : Z×U×R×
Z∗ → R is defined as

H(z(t), u(t), ξ0, ξ(t)) := ξ0L(z(t), u(t))

+ 〈ξ(t), f(z(t), u(t))〉
(5)

1Notice the difference between the Hamiltonian function H in the optimal
control theory and the Hamiltonian H in the elastic rod theory.

The Hamilton’s equations in the infinite-dimensional settings

are as follows:

Proposition 3.1 (Maximum Principle [5], [28]): Let ū ∈
U be an optimal control for problem (2) and z̄(t) be the

corresponding optimal trajectory. Then, there exists a pair

(ξ̄0, ξ̄(t)) ∈ R×Z∗, t ∈ [0, T ], such that (ξ̄0, ξ̄) 6≡ 0, ξ̄0 ≤ 0,

ξ̄ satisfies the differential equation

dξ̄

dt
(t) = −

(

δf

δz

)†

(z̄(t), ū(t)) ξ̄(t)− ξ̄0
δL

δz
(z̄(t), ū(t))

(6)

where (·)† denotes the adjoint operator. The pointwise max-

imization of the pre-Hamiltonian holds, i.e.

H(z̄(t), ū(t), ξ̄0, ξ̄(t)) ≥ H(z̄(t), v, ξ̄0, ξ̄(t)) (7)

for all v ∈ U and for all t ∈ [0, T ]. Moreover, z̄ and ξ̄ satisfy

Hamilton’s canonical equations

dz̄

dt
(t) =

δH

δξ
(z̄(t), ū(t), ξ̄0, ξ̄(t))

dξ̄

dt
(t) = −

δH

δz
(z̄(t), ū(t), ξ̄0, ξ̄(t))

(8)

Furthermore, the vector ξ̄(T ) satisfies the transversality con-

dition

ξ̄(T ) = −
δΦ

δz
(z̄(T )) (9)

In the remainder of this paper, we will restrict ourselves in

studying only the normal extremals, i.e. where ξ̄0 6= 0 and

can be normalized to −1. The explicit form of the Hamilton’s

equations as a set of six (forward) PDEs and six (adjoint)

PDEs appears in Appendix I.

B. Computing optimal control – the forward-backward al-

gorithm

A solution to the optimal control problem (2) necessarily

has to satisfy the PMP conditions (7), (8), and (9). This calls

for solving the resulting two point boundary value problem in

a function space. This is a challenging task even for a finite-

dimensional nonlinear problem, for which various numerical

techniques have been proposed [30]–[32].

An alternate approach is to employ an iterative algorithm

(here referred to as forward-backward algorithm) to compute

the optimal control. The idea is to start with an initial guess

of the control u(1) in the first iteration. (This guess may be

zero.) In each subsequent iteration, the control is modified

so as to achieve the maximization of the control Hamiltonian

H [33], [34].

Suppose the state, costate and control at iteration k is

denoted as z(k), ξ(k), and u(k), respectively. At k-th iteration

the steps of this algorithm are as follows:

1) Run forward path: The state equation (1) is integrated

forward in time from t = 0 to T , to obtain the state

z(k).
2) Calculate terminal condition of the costate from the

transversality condition (9).
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Fig. 2: Summary of the numerical experiments: We select four iterations for each experiment. Six time instances, including

the initial time t = 0 and the terminal time t = T , are illustrated for each iteration. The rod at the terminal time is depicted

in green while other time instances are depicted in fade-in purple. The target is represented by an orange ball. (a)-(d) The

arm is initialized with straight, undeformed configuration and is tasked to reach the target located in the first quadrant at

rtarget = (9, 9) [cm] with the tip. Simulation time is T = 0.5 s for all 20 iterations. (e)-(h) The arm is initialized with straight,

undeformed configuration and is tasked to reach the target located in the first quadrant at rtarget = (0,−2) [cm] with the

tip. Simulation time is T = 0.6 s for all 40 iterations. (i)-(l) The arm is initialized with bent, deformed configuration and is

tasked to reach the target located at rtarget = (16, 10) [cm] with the tip. Simulation time is T = 0.8 s for all 20 iterations.

3) Run backward path: The costate, or the adjoint equation

(6) is integrated backward in time from t = T to 0 to

obtain the costate ξ(k).
4) Update control: The triad (z(k), ξ(k), u(k)) will typically

not satisfy the Hamiltonian maximization criterion (7).

Therefore, the control is updated in the direction of

steepest ascent of the control Hamiltonian. Denoting the

gradient of H with respect to the control u as δH
δu

, the

control update law is expressed as

u(k+1) = u(k) + ηk
δH

δu(k)
(10)

where ηk > 0 is the learning rate at iteration k.

Then we repeat steps 1) – 4) until either of the two

convergence criteria is met: i) the absolute change in control

update becomes lower than a threshold ǫ; ii) the number of

iterations exceeds a predefined value.

C. Numerical solver

Both the forward and backward path equations (1), (6)

are systems of nonlinear PDEs that need to be propagated

forward (or backward) in time given initial data. For the

forward path, the specialized software Elastica [19] is used.

The software is designed for high-fidelity simulations of

three dimensional Cosserat rods. A custom numerical solver

is implemented for the backward adjoint equation.

Both forward and backward dynamics solvers use finite

difference techniques to discretize the spatial dimension.

For the backward dynamics, certain spatial discretization

operators are employed [35], [36], the details of which

appear in the Appendix II. As for the time discretization,

the forward dynamics are evolved via a position Verlet

scheme. Such a scheme is commonly used to simulate a

mechanical system where the state is decomposed into (q, p)
pair [37]. As explicit calculations show in Appendix I, the

costate ξ is decomposed into a (µ, γ) pair which can be

interpreted as velocity-position variables. Hence, the position

Verlet scheme is also used for costate dynamics to integrate

backward in time.

IV. SIMULATION RESULTS

In this section, we demonstrate the numerical results of the

optimal control on a single CyberOctopus arm of rest length

L0. In all our experiments, the intrinsic strains are chosen

so that the arm is intrinsically straight, i.e. ν◦ = (1, 0) and

κ◦ = 0. The variable diameter φ(s) = φbase(L0 − s) + φtips
models the tapering of the arm. The cross sectional area

and the second moment of area are given by A = πφ2

4 and

I = A2/4π. The effective shear modulus is given by G =
4
3 · E

2(1+Poisson’s ratio) [19], where we take the Poisson’s ratio

to be 0.5 by assuming a perfectly incompressible isotropic

material. Parameters like density, modulus of elasticity, and

physical dimensions are taken from [20], [38]. Simulation

parameters are tabulated in Table I.
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TABLE I: Parameters for Numerical Simulation

Parameter Description Numerical value

Rod model

L0 length of the undeformed rod [cm] 20
φbase rod base diameter [cm] 2
φtip rod tip diameter [cm] 0.8
ρ density [kg/m3] 1042
ζ damping coefficient [kg/s] 0.01
E Young’s modulus [kPa] 10

Numerics

∆t Discrete time step-size [s] 10−5

N number of discrete segments 100
ǫ threshold for control convergence 10−8

A. Numerical experiments

We test our solver to find the optimal trajectories for

three different test cases. We set the terminal tip orientation

free and only penalize the distance between the terminal

tip position and the target position rtarget ∈ R
2, i.e. for

qtarget = (rtarget, θtarget), we use the following formula for

Φtip(·, ·)

Φtip

(

q(T, L0), q
target

)

=
1

2

∥

∥r(T, L0)− rtarget
∥

∥

2
(11)

where the norm is the usual Euclidean distance in R
2.

1) Reaching task: Our first experiment is a simple reach-

ing problem. The arm is initialized to be straight and unde-

formed. Our goal is to control the arm to reach the target with

the tip at time T = 0.5 s. We consider the optimal control

problem (2)-(4), (11) with weight parameter χ1 = 10 and

regularization parameter χ2 = 2× 104. We ran the forward-

backward algorithm for 20 iterations with fixed learning rate

ηk = 3× 10−5.

We select four different iterations to demonstrate the

control results. As we see in Fig 2a-d, the reaching capability

of the arm improves over iterations due to control updates.

In the 2nd iteration, the arm does not bend much yet but

shows the trend of moving towards the target. In the 6th

iteration, the arm tip already gets close to the target. The

controls converge quickly, and in the last iteration, the time

snapshots show that the learned optimal control drives the

arm to smoothly bend towards the target and the tip reaches

the target at the terminal time. Fig. 3 depicts the control

inputs in the last iteration. We can see the emergence of a

wave propagation in control inputs.

2) Fetching task: During a fetching motion, the arm is ob-

served to form several pseudo-joints [17]. To investigate this

behavior, optimal trajectories are computed where the static

target rtarget is close to the base of the arm and is thought

of as the mouth of the octopus. The arm is initialized to be

straight and undeformed. The forward-backward algorithm is

run for 40 iterations with parameters χ1 = 10, χ2 = 2×104

and ηk = 4 × 10−5. The terminal time T = 0.6 s is fixed

for all iterations. Fig. 2e-h depicts the fetching movement

where the arm forms a bend as it tries to get close to the

target point.

global profile

time 0-0.4 s

traveling wave

time 0.4-0.5 s

traveling wave

Fig. 3: Learned optimal controls for the reaching task:

Control inputs uF = (uF1 , uF2) and uC along the arm

are illustrated for the last iteration. Nine time snapshots are

shown in orange from t = 0 s to t = 0.4 s, and sixteen

time snapshots are shown in blue from t = 0.4 s to t = 0.5
s (the most transparent lines correspond to the beginning

of the time interval). The orange lines indicate the global

profile of the optimal controls. The blue lines indicate the

distinguishable traveling waves in optimal controls.

3) Shooting task (reaching from bent position): Octopuses

are known to curl up their arms while at rest, and when they

try to catch food from a distance, they ‘shoot’ one of the arms

towards the target [16]. During this, the bend propagation is

most prominently observed. Inspired by these observations,

in our last experiment the arm is initialized at a bent position

according to the initial curvature

κ(0, s) =
4

∑

i=1

Mi exp

(

−
(s− si)

2

2× σ2
i

)

where Mi’s are [20, 78, 10, -30], si’s are [0, 0.3L0, 0.7L0,

0.85L0], and σi’s are [0.015, 0.015, 0.012, 0.008]. Our goal

is to reach the target at time T = 0.8 s. We ran the forward-

backward algorithm for 20 iterations with parameters χ1 =
100, χ2 = 2× 104 and ηk = 3× 10−5.

The control results of four forward-backward iterations are

demonstrated in Fig. 2i-l. Even though the arm reaches the

target at the final iteration, the stereotypical bend propagation

[16] is absent. This is suggestive of the potential importance

of environmental effects such as drag forces.

B. Characteristics of optimal control

In our simulations, the optimal control solutions exhibit

the following patterns. There is an initial global profile for

the control. Starting from t = 0 s, a localized wave travels

back and forth along the global profile and the magnitude of

this wave increases as t increases. At first, the wave is not
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discernible due to its small magnitude and thus, the global

profile is dominant as indicated by the orange lines in Fig. 3.

As time t nears the final time T , the wave traveling from

the base to the tip of the arm becomes more visible and it

dominates the control as shown by the blue lines in Fig. 3.

We vary different parameters to investigate how they affect

the optimal control solution, especially the wave propaga-

tion.

1) Wave speed: We observed that the parameters of the

optimal control problem, e.g. T, χ1, χ2, r
target (see discussion

in Sec. IV-B.2 about the parameter χ1), geometry of the arm

(the length and tapered diameter profile), dissipation constant

ζ, and numerical integration constants (e.g. N,∆t, η) do not

affect the speed c of the wave. However, Young’s modulus

(E) and density (ρ) of the arm do affect the wave speed.

We calculate the speeds for different sets of E and ρ values,

which shows the linear relationship (the graphic is omitted

due to lack of space)

c = 0.653
√

E
ρ

This experiment indicates that the wave in the optimal control

solution is actually a fundamental property of the elastic

arm. Further study is required to draw connections to the

stereotypical bend propagation waves observed in octopuses

[16].

2) Parameter χ1: In the cost function (3), we penalize

the deformation of the arm with the parameter χ1. Even

though the parameter χ1 does not affect the wave speed,

increasing χ1 leads to an interesting observation. When χ1

is high enough, a visible second wave appears in the control

solution which propagates in the opposite direction of the

original wave. Moreover, these two waves meet exactly at

the middle point of the arm (Fig. 4). The resemblance of

this behavior with the observation of [17] demands further

analysis.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate an optimal control problem

for a single CyberOctopus arm modeled as a planar Cosserat

rod. A free endpoint optimal control problem is formulated

to minimize the control energy and a weighted potential

energy of the rod. To reach a target point, the proximity

of the arm’s tip to the target point is penalized at the

terminal time. The necessary first order optimality conditions

yield two systems, the Cosserat rod dynamics (forward)

and the adjoint dynamics (backward), both described by

nonlinear PDEs. To numerically solve these PDEs, specific

spatial and temporal discretization techniques are used. The

optimal controls are found by updating the controls in an

iterative manner called the forward-backward algorithm. This

framework is used to solve several biologically motivated

control tasks. These numerical experiments reveal emergence

of propagating waves in the optimal controls. However, the

stereotypical bend propagation along the arm is not discov-

ered under our current problem formulation. This motivates

us to consider environmental effects like drag, and constraints

of muscle actuation into our optimal control framework.

C
O

U
P

L
E

 C
O

N
T

R
O

L

Fig. 4: Comparison of wave behaviors in couple control for

different χ1 parameters in the reaching task: Sixteen time

snapshots are shown in green from t = 0.45 s (most solid)

to t = 0.5 s. (most transparent) The black arrows indicate

the direction of the dominant wave propagation. For χ1 = 1,

the usual dominating wave travels from base to the tip. For

χ1 = 50, both the original wave and a second wave are

visible and they meet at the middle point 0.5L0. For χ1 =
150, the second wave is dominant which travels from tip to

the base.
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APPENDIX I

EXPLICIT CALCULATIONS

A. Details of a planar Cosserat rod dynamics

For the planar case of the Cosserat rod, we denote q =
(r, θ) as the state where the position vector along the rod

r(t, s) ∈ R
2 and the angle θ(t, s) ∈ R can be used to

measure local strains – stretch (ν1), shear (ν2), and curvature

(κ). These are defined as follows:

rs = Qν, θs = κ

where Q =
(

cos θ − sin θ
sin θ cos θ

)

is the planar rotation matrix, and

ν = ( ν1ν2 ). The internal stresses, i.e. the forces n (represented

in the material frame) and couple m are related to the stored

energy function W by

n =
∂W

∂ν
, m =

∂W

∂κ

We take the following quadratic form of W so that the stress-

strain relationship becomes linear

W =
1

2

(

(ν − ν◦)TS(ν − ν◦) +B(κ− κ◦)2
)

where the intrinsic strains of the rod are denoted by (ν◦, κ◦).
Here, S = diag(EA,GA) is the stretch-shear rigidity matrix

and B = EI is the bending rigidity. E,G are the Young’s

modulus and shear modulus, respectively.

Let us denote pr = ρArt and pθ = ρIθt as the momentum

variables p = (pr, pθ), where ρ is the density, A is the

cross sectional area and I is the second moment of area.

Let ‘·’ denote the dot product of two planar vectors, and ‘×’

represent the component of the cross product of two planar

vectors along the normal vector that is coming out of the

plane, i.e. ( x1

x2
) · ( y1

y2
) = x1y1 + x2y2 , and ( x1

x2
) × ( y1

y2
) =

x1y2 − x2y1.

The Cosserat dynamics (1) are written as

rt =
1

ρA
pr

θt =
1

ρI
pθ

prt = (Qn)s −
1

ρA
ζpr + uF

pθt = (m)s + ν × n−
1

ρI
ζpθ + uC

(A-1)

where u = (uF , uC) denote the force and couple control

inputs.

B. Details of the adjoint equations

Denote the costate to (q, p) = ((r, θ), (pr , pθ)) as (µ, γ) =
((µr, µθ), (γr, γθ)). Then, the pre-Hamiltonian (5) is explic-

itly written as

H =

∫ L0

0

[

1

ρA
µr

· pr +
1

ρI
µθpθ + γr

·

(

(Qn)s −
1

ρA
ζpr

)

+γθ

(

(m)s + ν × n−
1

ρI
ζpθ

)

+ γr
· uF + γθuC

−
1

2

(

uF
· uF +

(

uC
)2

)

− χ1V(q)

]

ds

(A-2)
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Maximizing H with respect to u gives the first order neces-

sary condition for optimal control

uF = γr, uC = γθ (A-3)

Furthermore, the costate evolution equations (6) take the

explicit form

µr
t = −

δH

δr

= −

(

QSQTγr
s

)

s
−

[

QM1(GAν −EAσ)γθ
]

s
− χ1(Qn)s

µθ
t =−

δH

δθ

=−

(

Bγθ
s

)

s
+ [Q (M2n− SM2ν)] · γ

r
s

+ [(M2ν)× n+ ν × (SM2ν)] γ
θ
− χ1 ((m)s + ν × n)

γr
t = −

δH

δpr
= −

1

ρA
(µr

− ζγr)

γθ
t = −

δH

δpθ
= −

1

ρI

(

µθ
− ζγθ

)

(A-4)

where σ = ν − ν◦, M1 = ( 0 1
1 0 ) and M2 =

(

0 −1
1 0

)

.

These equations are to be accompanied with the transver-

sality condition (9) (with (4), (11))

µr(T, s) = −δ(s− L0)
[

χ2(r(t, s) − rtarget)
]

∣

∣

∣

t=T

µθ(T, s) = 0

γr(T, s) = 0

γθ(T, s) = 0

(A-5)

where δ(·) denotes the delta function.

C. Control update law

Denoting u = (uF , uC) and γ = (γr, γθ), we can

write the control update law (10) for the forward-backward

algorithm at iteration k as

u(k+1) = u(k) + ηk
δH

δu(k)
= u(k) + ηk

(

γ(k) − u(k)
)

(A-6)

APPENDIX II

NUMERICAL METHODS

We use the following spatial and temporal discretization

for the backward path that is consistent with the forward

path.

A. Spatial discretization

In the software package Elastica, the Cosserat rod is

decomposed into N + 1 nodes for the position r and N
segments for the angle θ [19].

We define the following two difference operators for

vectors according to finite difference approximation [35],

[36]. Let {Rp}N denote a set of N vectors in R
p. Then,

D̃ : {Rp}N 7→ {Rp}N+1 and D̄ : {Rp}N 7→ {Rp}N−1 are

defined as follows:

ai=1,...,N+1 = D̃(bj=1,...,N ) =

{

b1, i = 1

bi − bi−1, i = 2, . . . , N

− bN , i = N + 1
(A-7)

and

cℓ=1,...,N−1 = D̄(bj=1,...,N ) = bℓ+1 − bℓ, ℓ = 1, . . . , N − 1

(A-8)

where ai ∈ R
p for i = 1, . . . , N + 1, bj ∈ R

p for j =
1, . . . , N and cℓ ∈ R

q for ℓ = 1, . . . , N − 1. Note that D̃
and D̄ operate on a set of N vectors and then return N + 1
and N − 1 vectors, respectively.

Now for the rest of this Appendix, we will use specific

subscripts (·)i, (·)j and (·)ℓ to denote the set of discretized

variables with the dimension of spatial discretization to be

N + 1, N and N − 1, respectively.

For the backward path, we discretize the costate into µr
i ,

γr
i and µθ

j , γθ
j . Then the first-order necessary condition for

optimal control is
uF
i = γr

i

uC
j = γθ

j

(A-9)

where uF
i and uC

j are the discretized control inputs to be

used in the forward path.

The costate dynamics (A-4) are discretized as follows:

dµr
i

dt
=− D̃

(

QjSQ
T

j D̄(γr
i )/∆s

)

− D̃

(

QjM1(GAνj − EAσj)γ
θ
)

− χ1D̃ (Qjnj)

dµθ
j

dt
=− D̃

(

BD̄(γθ
j )/∆s

)

+ [Qj (M2nj − SM2νj)] · D̄(γr
i )

+ [(M2νj)× nj + νj × (SM2νj)] γ
θ
j ∆s

− χ1

(

D̃ (mℓ) + (νj × nj)∆s
)

dγr
i

dt
=−

1

ρA
(µr

i − ζγr
i )

dγθ
j

dt
=−

1

ρI

(

µθ
j − ζγθ

j

)

(A-10)

where ∆s = L0/N is the length of each discretized segment

of the rod. ri , Qj , νj , σj , nj and mℓ are discretized variables

obtained from the forward path. Details of these variables are

covered in [19].

The transversality conditions (A-5) are discretized into

µr
i (T ) = −δ(i− (N + 1))

[

χ2(ri − rtarget)
]

∣

∣

∣

t=T

µθ
j (T ) = 0

γr
i (T ) = 0

γθ
j (T ) = 0

(A-11)

B. Time discretization

We use the second-order position Verlet time integra-

tion [19] as follows:

γr
i

(

t−
∆t

2

)

= γr
i (t)−

∆t

2

dγr
i

dt
(t)

µr
i (t−∆t) = µr

i (t)−∆t
dµr

i

dt

(

t−
∆t

2

)

γr
i (t−∆t) = γr

i

(

t−
∆t

2

)

−
∆t

2

dγr
i

dt
(t−∆t)

(A-12)

Similarly for γθ
j and µθ

j .
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