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1. Introduction

Building with biological components is an
exciting avenue toward the synthesis of
fundamental biological principles and con-
ventional engineering design.[1–5] In this
context, biological machines have become
a prominent paradigm to explore this syn-
ergy, in the pursuit of both novel applica-
tions and fundamental understanding.
Biohybrid robotics has been interpreted
broadly through the implementation of var-
ious strategies and levels of biology–
machine integration. Perhaps the most
mature approach consists in interfacing
artificial elements with whole organisms
or limbs. Examples range from living
beetles and cockroaches embedded in a
robotic motile substrate and/or coupled
to electronic controllers[6–17] for enhancing
maneuverability, adaptivity, and decision-
making, to separated pigeon wings for
improving passive flight control abilities.[18]

Such techniques directly take advantage of
naturally selected, fully formed, functional,
and performant biological architectures.

J. Wang, Dr. R. Bashir
Department of Bioengineering
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA
E-mail: rbashir@illinois.edu

J. Wang, Dr. I. Park, Y. Kim, Dr. R. Bashir
Holonyak Micro and Nanotechnology Laboratory
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA

X. Zhang, Z. Dou, Dr. M. Gazzola
Department of Mechanical Science and Engineering
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA
E-mail: mgazzola@illinois.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202000237.

© 2021 The Authors. Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.1002/aisy.202000237

J. Park, Y. Kim
Department of Material Science and Engineering
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA

E. Kilicarslan
Department of Molecular and Cellular Biology
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA

Dr. R. Bashir
Carle Illinois College of Medicine
University of Illinois Urbana-Champaign
Champaign, IL 61801, USA

Dr. M. Gazzola
National Center for Supercomputing Applications
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA

Dr. R. Bashir, Dr. M. Gazzola
Carl R. Woese Institute for Genomic Biology
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA

The intriguing opportunities enabled by the use of living components in bio-
logical machines have spurred the development of a variety of muscle-powered
biohybrid robots in recent years. Among them, several generations of tissue-
engineered biohybrid walkers have been established as reliable platforms to study
untethered locomotion. However, despite these advances, such technology
is not mature yet, and major challenges remain. Herein, steps are taken to
address two of them: the lack of systematic design approaches, common to
biohybrid robotics in general, and in the case of biohybrid walkers specifically, the
lack of maneuverability. A dual-ring biobot is presented which is computationally
designed and selected to exhibit robust forward motion and rotational steering.
This dual-ring biobot consists of two independent muscle actuators and a
four-legged scaffold asymmetric in the fore/aft direction. The integration of
multiple muscles within its body architecture, combined with differential
electrical stimulation, allows the robot to maneuver. The dual-ring robot design
is then fabricated and experimentally tested, confirming computational predic-
tions and turning abilities. Overall, a design approach based on modeling,
simulation, and fabrication exemplified in this versatile robot represents
a route to efficiently engineer complex biological machines with adaptive
functionalities.
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However, they suffer from the limitation that the hardware of the
robot is fundamentally determined by the organism of choice,
thus reducing design freedom, potential for customization, opti-
mization, and scaling, as well as machine interfacing depth. In
this context, a recent interpretation of the biohybrid paradigm
aims at engineering living machines from the ground up,
leveraging advancements in tissue engineering and microfabri-
cation to access biological abilities at the cellular level in a less-
constrained design space. In this particular class of biohybrid
systems, the biological component can provide actuation, sens-
ing, and even computing abilities,[19] whereas artificial elements
typically provide the organizational and structural template.[20,21]

This is usually implemented through an elastic, engineered scaf-
fold (the “skeleton”) around which cells grow, self-organize, and
coordinate their activities, resulting in higher-order functionali-
ties as a combination of internal processes and interactions with
the environment.[2,5,22,23]

Over the past decade, this design paradigm has led to biointe-
grated soft robots (biobots) that can grip, pump, swim, or walk in
response to external stimuli (light, mechanic/fluidic pressure,
electric fields), providing a glimpse into the potential of this tech-
nology.[19,24–35] Among these prototypes, untethered walking bio-
bots in the millimeter/centimeter size range, have emerged as
reliable platforms to explore and test new cell manipulation
and fabrication protocols, design motifs, and integration strate-
gies in a consistent setting. Several generations of walkers have
been demonstrated.[24,25,36,37] Their designs incorporate flexible
hydrogel skeletons fabricated with stereolithographic 3D print-
ing,[38] and living contractile muscle tissue engineered in vitro[39].
These muscle constructs can generate millinewton contraction
forces leading to walking speeds up to �2 body lengths min�1

(� 0.5mms�1).[37] In addition to locomotion, biological walkers
have also enabled the investigation of other biohybrid function-
alities such as self-healing, matrix degradation, cryopreservation,
and strengthening through exercise.[25,37,40–42]

Despite these early successes, current designs exhibit several
limitations. Here, we focus on two of them: first, biohybrid
walkers can only perform unidirectional locomotion and are inca-
pable of turning, rotating, or altering their trajectory; second,
although progresses have been made in the computational for-
ward design and optimization of biohybrid robots,[19,37] there
is still a lack of systematic design approaches. As a consequence,
from a pool of candidate, intuition-originated designs, often only
one or two are actually fabricated and tested due to the time con-
suming nature of these experiments and their low success rate.
Moreover, without reliable numerical tools and metrics to assess
a priori the performance of candidate solutions, their selection
criteria is ultimately somewhat arbitrary.

Here, motivated by the long-term goal of achieving adaptive
behavior in biohybrid robotic systems, we focus on maneuver-
ability while expanding the role of computational design for rapid
prototyping and selection. The result is a versatile dual-ring bio-
hybrid robot capable of walking straight or turning in response to
controllable external electrical stimulation.

We utilize a recently introduced simulation approach for soft,
heterogeneous musculoskeletal architectures[43,44] to model and
test a variety of intuitive designs. Based on this computational
analysis, a design striking a balance between walking speed,
robustness and turning ability is selected. This design uses

two independent actuators attached to a four-legged skeleton,
allowing for localized control and tunable behavior. Finally,
the selected prototype is fabricated and characterized, verifying
predicted performance. Our results pave the way to advanced
design, fabrication, and optimization process for complex mul-
tifunctional biohybrid systems.

2. Results and Discussion

2.1. Intuitive Designs and Computationally Assisted Selection

Previous biohybrid walking robots (Figure 1b) consist of a hydro-
gel scaffold made of two pillars (legs) and a connecting
bridge.[25,37,40–42] Skeletal muscle tissue is shaped so as to wrap
around the pillars, an architectural motif reminiscent of the
muscle–tendon–bone relationship found in vivo. Muscle
contractions bend the legs inward, flexing the bridge, and storing
elastic energy that is subsequently released during the muscle
relaxation phase. As a result, cyclic frictional forces are generated
at the leg-substrate interface. Symmetry is broken by having a leg
shorter than the other, giving rise to net unidirectional forces,
thus forward locomotion.

Then, to achieve controllable turning maneuvers, we need to
move away from single-muscle ring constructs, and instead con-
sider multiple-muscle layouts that can generate lateral net forces
as well. This augmented design space lends itself to a number of
potential solutions. Based on our previous understanding of the
single-ring biohybrid walker,[24,25] three next-generation walking
devices are proposed: dual-ring, tri-ring, and quad-ring biobots
(Figure 1c). Next, to enable a rational selection process, the three
intuitive designs are modeled as assemblies of Cosserat
rods[43,44] and numerically evaluated.

To inform a muscle model able to recapitulate realistic
force outputs, we started by fabricating a testbed consisting of
one engineered muscle ring and a two-pillar soft scaffold.
Muscle rings were formed by embedding myoblasts in an
extracellular matrix (ECM) solution and casting into a
polydimethylsiloxane (PDMS) mold for compaction (Figure 1a).
The scaffold was 3D-printed using a well-characterized
digital-light-projection-based printer (Figure 1b—refer to the
Experimental Section for details). Static tension (passive force)
and cyclic contractions (active force) induced by electrical stimu-
lation were characterized by measuring deflections of the pillars.
Figure 2b shows our measurements relative to five samples, for
different stimulation frequencies. This characterization provides
us with average muscle outputs and associated intrinsic variabil-
ity (uncertainties relative to cell density, myotube width, and
alignment may lead to differences up to 40%). Based on these
data, we created a corresponding virtual muscle as in the studies
by Aydin et al. and Pagan-Diaz et al.[19,37] For verification, we
wrapped our model muscle around a computational scaffold with
the same geometric and material properties of the experimental
setup (refer to Supporting Information for more details). Upon
actuation, simulated scaffold deflections (based on the average
motor outputs of Figure 2b) are found to be in good agreement
with experiments (Figure 2a,c).

Armed with a muscle model tailored to our biofabrication
protocol and desired ring dimensions, we virtually assessed
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the performance of our three intuitive designs (Figure 2d,e). The
goal is to select the prototype that best compromises between
locomotion speed, turning abilities, and performance robust-
ness. Indeed, as shown in Figure 2b, the behavior of our biologi-
cal actuators can significantly vary across samples, thus a good
design must be able to perform reliably in the face of uncertainty.
The three designs were then tested assuming 4Hz stimulation
frequency, for different combinations of passive/active forces to
account for variable, asymmetric motor outputs. As shown in
Figure 2e, the three-ring biobot is the fastest (although the
one characterized by the largest spread), closely followed by
the two-ring model. Nonetheless, the two-ring biobot outper-
forms all other designs when it comes to straight walking or turn-
ing, exhibiting the highest level of reliability and sharpest turns.
Thus, based on this preliminary analysis, the dual-ring biobot
was selected for fabrication and experimental validation.

2.2. Symmetric Stimulation and Forward Walking

As the design of the biobot’s layout is crucial to its performance,
so is the design of the actuation strategy. Then, after settling on
the dual-ring prototype, we proceed with the design and compu-
tational assessment of the electric field (E-field) stimulation
setup. First, we focus on forward straight walking and consider
a system made of two parallel, longitudinal platinum electrodes
of 20mm length, set 20mm apart, and with applied voltage dif-
ference of 20 V. The electrodes are immersed in physiological
solution within a petri dish of 35mm radius (Figure S4a,
Supporting Information). When unperturbed, this setup gener-
ates an electric field symmetric about the horizontal midplane,
and approximately uniform at the center of the domain. Then,
a virtual dual-ring biobot is placed within the petri dish at three
different locations: at the center of the stimulation setup and
aligned with the horizontal symmetry axis, as well as at distances

of 1 and 2mm from the symmetry axis in the y-direction
(Figure 3e). We seek to ascertain how the biobot presence and
location affect the local electric field “felt” at the two muscle
rings, and whether symmetric stimulation is approximately pre-
served for forward walking. COMSOL simulations (Table S2 and
Figure S3, Supporting Information) reveal that symmetric stim-
ulation is indeed preserved (Figure 3e), and that this setup is suit-
able to test and control straight walking (Figure S5, Supporting
Information).

With a better understanding of the E-field distribution, we pro-
ceeded to fabricate the system and deploy our dual-ring biobot to
assess its functionality (Figure 3a,b). The dual-ring structure was
fabricated with the same protocol as the single-ring biobot: ster-
eolithographic 3D printing and tissue engineering based onmyo-
blasts and ECM solution. To verify the myogenic health of the
tissue-engineered muscle rings, immunohistochemical staining
was carried out (Figure 3d). Differentiated myotubes were found
to be distributed in the tissue and aligned along the muscle ring.
The observed muscle striations indicate the tissue’s capability of
generating force for locomotion (Figure 3d).[46] Before testing
their walking performance, we further characterized muscle
force outputs of every sample, by turning the robot upside-down
to measure cyclic leg deflections for different stimulation fre-
quencies (Figure 3c). These data were then used to aid the com-
parison with simulations, and in particular to sort biobots based
on muscle passive forces, as discussed in the following sections.

Once placed in the petri dish and stimulated at 4 Hz
frequency, the biobot dynamics finally resulted in forward direc-
tional walking (Figure 3f ). The fore/aft geometrical asymmetry
of the dual-ring biobot induces directed locomotion toward the
side of the longer pillars with a mean average velocity ranging
from 2.3 to 6mmmin�1, which is approximately one body length
per min�1 (Figure 3h). Instantaneous velocities reveal an initial
acceleration phase of �10 s, followed by a plateau (Figure S6a,
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Supporting Information). We attribute this behavior to the shift-
ing E-field strength distribution away from the setup horizontal
symmetry axis (Figure 3e). Indeed, due to intrinsic muscles var-
iability, biobots do not walk perfectly straight, but present slight
turning angles, thus moving in both x- and y-direction, and off
the axis of symmetry. Figure 3g shows the walking trajectories of
our six functional bots, which are found to be quantitatively com-
patible with simulated ranges (shaded regions in Figure 3g),
based on the muscle output data recorded before each experi-
ment by turning the biobot upside-down.

Interestingly, our simulations predict an important role of
muscle rings’ passive forces in dictating the walker behavior.
During the maturation process, muscle rings develop an internal
tension (passive force)[47] which can vary significantly across
samples (Figure 2b). Then, once the muscle is applied to the

biobot’s skeleton, its passive force causes the beam connecting
the legs to flex. A large passive force produces a persistent, pro-
nounced bending, which affects the legs’ contact angle and fric-
tion forces distributions, as if the biobot was “tiptoeing” on the
petri dish substrate. In our simulations, these excessive deforma-
tions are found to be detrimental both for speed and for reliably
maintaining forward bearing. To confirm our predictions, we
sorted the six fabricated robots into two groups: biobots exhibit-
ing high passive forces (550� 1100 μN) and biobots character-
ized by low passive forces (0� 150 μN), where the passive
force for each dual-ring biobot is the average of the two muscle
rings. Biobots with high passive forces were found to walk at the
average speed of 2.5mmmin�1, whereas biobots with low pas-
sive forces turned out to be more than twice as fast with an
average velocity of 5.9mmmin�1 (Figure 3h). In addition,
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Figure 2. Computationally assisted selection of multi-ring biobots. a) Illustration of passive and active deflection from experiments (left) and from the
virtual reconstruction of the single-ring testbed (right). b) Rest tension and cyclic contraction force experimentally obtained from single-ring testbeds
stimulated at 1, 2, 3, and 4 Hz (mean� SD, n¼ 5). Observed frequencies from the experimental pillar deflection data are plotted to confirm muscle
responsiveness. c) Measured single leg deflection data at different frequencies used to calibrate our muscle model, and predicted leg deflection data on
the virtual testbed when average forces and observed frequencies from (b) are used as inputs. d) Our three multi-ring biobot intuitive designs.
e) Predicted walking and turning behaviors for the three multi-ring biobots. All input forces are based on the passive force and the 4 Hz active force
from (b). Velocity: The velocity range for each design is obtained through seven simulation samples that account for passive force variations (mean�10%
SD, 752� 33.6 μN) and active force variations (mean�1 SD, 182� 49 μN). The lower/upper bound for each design is produced by the following passive
and active force combinations: 2 Rings (þ10% SD passive, þ1 SD active/�10% SD passive, þ1 SD active), 3 Rings: (þ10% SD passive, �1 SD active/
þ10% SD passive, mean active), and 4 Rings (�10% SD passive, �1 SD active/�10% SD passive, mean active). Deflection from straight path: When
uniformly electrically stimulated, and in the absence of uncertainties, the biobots walk in a straight line aligned with their initial bearing. Here, we assess
instead how imperfect (i.e., asymmetric due to experimental uncertainties) muscle responses affect the ability to walk straight. Biobots characterized by
small deflections are less sensitive, hence more reliable in performing directional motion. Walking trajectories for each design are simulated using for all
muscles the average passive force of 752 μN from (b). All right legs produce active forces equal to the average value of 182 μN from (b). Left legs instead
exhibit an active force of 182 μN� 1 SD. This analysis is not meant to be a comprehensive uncertainty quantification study, rather a rapid sensitivity
estimate, in line with the prototyping character of these simulations. Turning scope: To access the potential steering capabilities of our designs, we
consider passive forces of 1079 μN (the maximum passive force from (b)), and active forces of 239 μN (the maximum active force from (b)) on
one side of the bot and 89 μN (maximum active force�ΔF) on the other side. The differential ΔF¼ 150 μN has been selected to be approximately
consistent with the maximum active force differential from (b). Resulting trajectories are rotated to align the robots’ initial bearing with the vertical
direction, to ease comparison (raw turning trajectories shown in Figure S2, Supporting Information).
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trajectories were confirmed to be negatively affected by high pas-
sive forces, presenting a much less consistent behavior, exhibit-
ing sudden orientation changes and overall struggling with
maintaining forward directionality (Figure 3g). This characteriza-
tion underscores the utility of simulations not only to design, but
also to subsequently analyze and understand the mechanisms
at play.

We finally contextualize the straight walking performance of
our dual-ring biobot relative to previous generations of

walkers[25,37] as well as an array of biological living creatures.[45]

Data are shown in Figure 3i via a phase-space in which body
mass is plotted against cost of transport (COT),[45] a dimension-
less measure of efficiency that quantifies the energy consump-
tion of transporting an object (the body) over a certain
distance (exact definition and calculations can be found in
Section 4.7). We note that the plot is expressed in logarithmic
scales and that lower values of COT correspond to more efficient
instances. The comparison reveals that despite differences in

Figure 3. Straight walking and symmetric electrical stimulation. a) Illustration of the symmetric electrical stimulation setup with two 20mm Pt electrodes.
The dual-ring biobot dimensions are displayed on the CAD image. b) Experimental biobot image illustrating the skeleton structure and muscle arrange-
ment. c) Bright-field image of the dual-ring biobot facing down. d) Confocal imaging of the muscle tissue expressing MF 20 myosin heavy chain and
α-actinin (right) shows myotube distribution and muscle striation. e) The symmetric stimulation setup is modeled in COMSOL. The electric field strength
distribution along x-axis and y-axis for three different bot locations are simulated and compared. f ) Walking of the dual-ring biobot is illustrated by three
still images from a representative walking video and compared with computational simulated results (passive force 150 μN, measured from the dual-ring
biobot in this panel; active force 182 μN, the average value at 4 Hz from Figure 2b). g) Experimental walking trajectories of six different dual-ring biobots
are sorted into two groups, the high passive force group and the low passive force group, and compared with simulated results. In simulation, we account
for muscle variations by including the largest active force difference from the Figure 2b dataset, with onemuscle ring characterized by the maximum active
force of 239 μN and the other by the minimum active force of 114 μN. The passive forces used are the maximum values of experimentally measured for
each group (150 μN for the low passive force regime and 1100 μN for the high passive force regime). h) Walking velocities of the actual biobots fabricated
and tested are sorted in the high/low passive force groups and compared with model predictions. The virtual dual-ring biobots are simulated using the
experimentally observed passive forces in each group (min, average, max: 0, 75, and 150 μN for the low passive force group and 550, 825, and 1100 μN for
the high passive force group) and minimum, average, and maximum active forces (114, 182, and 239 μN) at 4 Hz from the single muscle ring characteri-
zation data of Figure 2b. Average simulation and experimental velocities� SD are indicated in the plot for comparison. i) Phase-space plot illustrating
body mass versus COT for our dual-ring biobot, previous implementations[25,37] and an array of biological living creatures.[45]
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body scale, different generations of walkers present similar per-
formance, exhibiting average velocities of 1–2 body lengths
min�1 and COT �2. This is explained by the fact that all these
machines adopt a walking mechanism that capitalizes on asym-
metric friction via similar architectural templates. More surpris-
ingly though, our biobots are found to be in a range
approximately competitive with biological animals. We note here
that while animal data from the study by Tucker[45] account for
metabolic energy conversion, we do not have access to it in the
case of our biobots, and energy expenditure is instead approxi-
mated by the output work provided by the muscle, clearly an opti-
mistic estimate. Nevertheless, it underscores the potential of this
technology to 1 day compete on-par with biological creatures.

2.3. Asymmetric Stimulation and Rotational Steering

As illustrated in the previous section, our dual-ring biobots
achieve forward walking by combining symmetric actuation with
asymmetric fore/aft body geometry. Then, rotational steering can

be obtained by breaking left/right actuation symmetry to produce
net lateral frictional forces, a route made possible by the presence
of multiple muscles. To control this process, we design a second
local stimulation strategy and setup. We consider two parallel
platinum electrodes, aligned in the y-direction at a separation dis-
tance of 20mm, and with an applied voltage difference of 20 V
(Figure 4a and Figure S4b, Supporting Information). The electro-
des are 3mm long, much shorter than in the previous setup. This
generates a dipole-like electric field with strong horizontal gra-
dients, suitable to achieve differential stimulation between the
two muscles. Again, we modeled this setup in COMSOL
(Table S2, Figure S3, Supporting Information) to assess the local
field strength at the legs of a virtual biobot placed at three differ-
ent, representative locations/orientations (Figure 4c). Numerical
results indicate E-field differences of �2V cm�1 (Figure 4c), that
approximately correspond to a 50% right/left stimulation imbal-
ance, a difference expected to suffice for steering.

We then fabricated the setup for testing. As in the previous
section, before deploying our dual-ring biobot, we characterized

Figure 4. Controllable turning and asymmetric electrical stimulation. a) Illustration of the asymmetric electrical stimulation setup with two 3mm Pt
electrodes. The expected turning directions of the dual-ring biobots are displayed on the CAD image. b) Measured overall leg deflection data of
left/right sides under asymmetric stimulation, which are used as inputs for simulations. c) The asymmetric stimulation setup is modeled in
COMSOL. The electric field strength distribution along x-axis and y-axis for three different biobot locations/orientations are simulated and compared.
d) Linear and angular displacement versus time of the dual-ring biobot when tuning left. e) Turning trajectories of the dual-ring biobot compared with the
model predictions. The predicted ranges of turning trajectories are determined by considering two passive forces: the average passive force
(752 μN—lower bound) and the maximum passive force (1079 μN—upper bound) from Figure 2b. The active forces are instead directly based on
the measurements of panel (b) of this figure. f ) Linear and angular displacement versus time of the dual-ring biobot when tuning right.
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the effect of differential stimulation on the muscles outputs. To
this end, the biobot was placed with the pillars facing up, and one
leg pair aligned with the electrodes. By measuring the cyclic leg
deflections induced by stimulation at different frequencies
(Figure 4b), we quantified muscles’ contraction forces and their
asymmetry. These data were then used as input to a biobot virtual
replica, to compare simulated and experimental trajectories.

After this characterization, the biobot’s turning functionalities
were finally tested. As shown in Figure 4e, the biobot exhibits left
steering when the electrodes are initially aligned with the right
leg pair. This is intuitively explained by the fact that the right side
of the biobot is more strongly stimulated, producing larger con-
traction forces and deflections relative to the left side. As a result
the right side walks faster, causing the biobot to steer to the left.
As expected, a mirrored behavior and right turning is observed
(Figure 4e) when the left side of the biobot is initially aligned with
the electrodes. To quantify steering, the x–y position of the biobot
was tracked together with its bearing and instantaneous angular
velocity (Figure 4d,f ). The turning speed is found to be as high as
60°min�1 during the initial phases. As the turning angle
increases, the biobot tilts relative to the axis connecting the
two electrodes. Consequently, the difference in E-field strength
at the left/right actuators decreases (after a transient and for suf-
ficiently large reorientations), leading to the turning rate reduc-
tion shown in Figure 4d,f and Figure S6b, Supporting
Information.

Finally, we input the muscle characterization data gathered
before deploying the biobot into our simulation to compare
resulting trajectories. As shown in Figure 4e, our numerical
results are consistent with experimental observations, confirm-
ing the prediction abilities of our computational design
approach. Differently from the straight walking case, in the turn-
ing scenario both experiments and simulations point to a positive
role of high passive forces. Indeed, they are found to contribute
to faster, consistent turning, rather than making the biobot
slower and more erratic, as in Figure 3g,h. A potential explana-
tion is again related to the previously observed “tiptoeing” behav-
ior that makes the bot more susceptible to reorientations. If the
stimulation is symmetric, random factors cause uncontrolled
directional changes, with detrimental effects (Figure 3). In the
turning scenario instead, the asymmetric stimulation produces
a consistent right/left imbalance that dominates other random
variables, making the biobot both more controllable and easier
to steer. Because of the observed significant impact of passive
forces, better control of muscle internal tension at the fabrication
stage is then identified as an important area for further
improvement.

3. Conclusion

In this work, we introduce a novel dual-ring biohybrid walker
consisting of two independent muscle ring actuators and a
four-legged hydrogel skeleton, and demonstrate its directional
walking and rotational steering abilities. This dual-ring biobot
design is selected based on several performance criteria, such
as walking speed, turning ability, and robustness, from a set
of candidate, intuitive designs modeled and evaluated numeri-
cally. After fabrication and testing, experiments are found to

confirm the prediction capabilities of our simulations, thus their
utility to prototype, assess and optimize prior to fabrication. This
systematic approach promises to accelerate the advancement of
biohybrid technology, by enabling the rapid development of
more complex designs and functionalities, toward the long-term
goal of autonomous behavior at the individual or group level.[48]

The maneuvering skills herby demonstrated represent a first step
in this direction. Because of its reliability and architectural fea-
tures, the proposed walking platform naturally lends itself to fur-
ther explore the on-board integration of miniaturized electronics
as well as neuronal components,[19,49] and push the sensory–
motor frontier.[50]

4. Experimental Section

4.1. Assembly of Dual-Ring Biobots

4.1.1. Fabrication and Preparation of PDMS Molds

To fabricate the PDMS molds, we first designed a negative mold
using a computer-aided design (CAD) software (SolidWorks) and
sent it to ProtoLabs for 3D printing. To preserve this original 3D-
printed negative mold, several duplicates of this negative mold
were made from Smooth-Cast 310 (Smooth-On). To make the
PDMS molds, PDMS base and curing agent Sylgard 184 (Dow
Corning) were mixed with 10:1 ratio by weight and degassed in
a vacuum desiccator. The mixture was then poured onto the neg-
ative mold duplicates in a petri dish and cured in 60∘C overnight.
The PDMSmolds were peeled off from the negative structures the
next day and sterilized by autoclaving for 30min followed by UV-
light sterilization in biosafety cabinet for 1 h (Figure 1a).

Prior to seeding the cell-gel solution, PDMS molds were
treated with 1%w/v pluronic F-127 (Sigma Aldrich) dissolved
in phosphate-buffered saline (PBS). The pluronic F-127 was used
to reduce cell and protein adhesion to the PDMS molds. After
each use, PDMS molds were sterilized in 10% bleach for
10min, in 70% isopropanol for 10min, and washed with deion-
ized (DI) water for 10min. Sterilized PDMS molds can be stored
in 60∘C and remain their functionalities for months.

4.1.2. Cell Culture of 2D Myoblasts

C2C12 immortalized mouse myoblasts (ATCC) were seeded at
1E6 cells per T-75 cell culture flask. Cells were cultured in growth
media (GM) consisting of Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% fetal bovine serum, 1%
L-glutamine, and 1% penicillin–streptomycin. Media were
changed daily, and cultures were kept in incubators at 37∘C
and 5%CO2. Once C2C12 cells reached 70–80% confluence in
�2–3 days, they were lifted using TrypLE Express Enzyme
(1�) phenol red and centrifuged to generate a cell pellet.
Exhausted cell media were aspirated out carefully, and the pellet
was resuspended in a small volume of GM for counting.

4.1.3. Construction of 3D Skeletal Muscle Rings

Cultured 2D C2C12 murine myoblasts less than ten passages
were used for all the functional dual-ring biobot formation.
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With known cell concentration, the cell suspension was aliquoted
into 15mL conical tubes, with each tube containing 3E6 cells.
The cell suspension in each conical tube was centrifuged to
remove remaining media. Cell pellets were then placed on
ice along with all the other reagents for forming the muscle
tissue. The pellet was resuspended with 115 μLGMþ containing
98% GM and 2% 6-aminocaproic acid, clotting buffer for
fibrinogen (ACA, Sigma-Aldrich), to reach a final concentration
of 1� 107 cells mL�1. The remaining reagents were added in the
following order, 6 μL of 100UmL�1 thrombin (Sigma-Aldrich),
90 μL Matrigel (Corning), and 75 μL fibrinogen (Sigma-Aldrich)
at a concentration of 16mgmL�1 for a total of�300 μL of cell-gel
solution (Figure 1a).

To form the muscle ring, 130 μL of well-mixed cell-gel solution
was hastily seeded into each of the two wells of the PDMS mold
due to solution coagulating quickly. Molds containing seeded
muscle cells were placed in incubators at 37∘C and 5% CO2
for 2 h to allow for further solidification. After 2 h, wells were
filled with 2mL of GMþ for further cell growth and tissue for-
mation over the course of 3 days, with media changed daily.

4.1.4. 3D Printing of Biobot Structures

The skeletal structure of the dual-ring biobot was printed using a
digital-light processing (DLP) 3D printer (Asiga PICO
2) (Figure 1b). The printing process functions by exposing liquid
resin to a light source (light projector) to polymerize a desired
layer thickness (0.2 mm). The layers stack to form the solid struc-
ture. The resin was made out of 20%v/v PEGDA 700 (Sigma-
Aldrich) in DI water with 0.1%w/v photo initiator (LAP,
Sigma-Aldrich) and 0.04%w/v Sunset Yellow dye (Sigma-
Aldrich) to prevent light-scattering effects. The skeletal structures
of the dual-ring biobot were designed in SolidWorks and set up
in the 3D-printing software (Asiga Composer) to specify the layer
height and exposure time, as well as the desired orientation of the
build on the printing platform.

Two glass coverslips (22� 22mm2) were functionalized with
3-(trimethoxysilyl) propyl methacrylate (3-TPM, Sigma-Aldrich)
then taped to the building platform so the structures stayed
attached during the printing process. When the printing process
was finished, the structures were removed from the building
platform. Prior to culturing, the printed structures were placed
in a 10% bleach solution for 1 h and washed with PBS for at least
1 h to remove the dye.

4.1.5. Final Assembly of Dual-Ring Biobots

Once the cell-gel mixture was compacted to a ring shape in the
PDMS mold over 3 days, the muscle rings were meticulously
transferred to a 3D-printed dual-ring biobot skeleton using a
tweezer. Media was then changed to the differentiation media
(DMþþ) consisting of �98% DMEM supplemented with 2%
ACA and 0.005% of insulin-like growth factor-I from mouse
(IGF-1, Sigma Aldrich). 3D skeletal muscle rings were differen-
tiated from myoblasts to myotubes and kept in DMþþ until they
mature. Media were changed daily, and the dual-ring biobots
with muscle rings attached were kept in incubators at 37∘C
and 5% CO2.

4.2. Confocal Imaging of Muscle Rings

Muscle rings were removed from the biobot structures at the end
of each experiment and assessed with immunohistochemical
staining and imaging. Tissue samples were rinsed with PBS
and fixed in 4%v/v of paraformaldehyde for 20min. To permea-
bilize the tissue samples, they were washed three times in PBS
for 5min and then incubated with 0.25%v/v Triton-X diluted
PBS for 15min. The muscle rings were then blocked and stored
in 1%w/v bovine serum albumin (Sigma-Aldrich) at 4∘C over-
night. The primary antibodies, mouse antimyosin heavy chain
(MF-20) and rabbit anti α-actinin, were used to stain for myosin
heavy chain and the sarcomere, respectively, with a 1:500 and
1:200 dilution ratio. The muscle samples were incubated over-
night at 4∘C and then washed three times for 5min before stain-
ing with secondary antibodies on the next day. The secondary
antibodies, AlexaFluor-488 antirabbit and AlexaFour-568 anti-
mouse (ThermoFisher), were used to stain α-actinin and MF-
20 antibodies, respectively. The samples were incubated over-
night with DAPI to stain nuclei at 4∘C. After washing with
PBS three times, the LSM 700 was used for the confocal fluores-
cent imaging.

4.3. Electrical Stimulation of Dual-Ring Biobots

To induce the contraction of 3D skeletal muscle rings, a function
generator was used to depolarize the muscle tissue. The function
generator ran at 20 V, and data collection was done over a series
of frequencies including 1, 2, 3, and 4Hz. The dual-ring biobots
were placed in a 35mm dish with 4mL of DMEM warmed to
37∘C in a water bath. The lid of the dish was fitted with two plati-
num (Pt) wires (20mm) that ran lengthwise vertically across the
dish (Figure S1a, Supporting Information). Two Pt electrodes
were connected to the function generator, creating a symmetric
electric field perpendicular to the bots resulting in straight loco-
motion. A second lid was fabricated with two shorter Pt electrode
(3mm) to generate an asymmetric electric field for turning
(Figure S1a, Supporting Information). Prior to stimulation,
the dish lids fabricated with Pt wires were submerged in 70%
isopropanol for 2min and submerged in PBS for 2min for ster-
ilization. Data were recorded through a stereomicroscope (MZ
FL III, Leica Microsystems) with a field of view large enough
to capture the entire dual-ring biobot. Video was captured at a
frame rate of 10 f s�1 with a digital microscope camera (Flex,
SPOT Imaging Solutions) and processed in ImageJ software
(NIH).

4.4. COMSOL Modeling of Electric Field Stimulation

To quantify the electric field strength that was applied to the
dual-ring biobot, a 3D simulation model of the symmetric/
asymmetric stimulation setup was designed using alternative cur-
rent (AC)/direct current (DC) electrostatic module (COMSOL
Multiphysics 5.3a) (Figure S4, Supporting Information). The
domain and boundary conditions of each material were obtained
from the literature,[51,52] and the electric conductivity of cell
media (1.4 Sm�1) was experimentally measured. To achieve sat-
isfactory solving resolution, the maximum mesh element size
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(�9� 10�4 mm) was set, which is smaller than theminimum dis-
placement of the walker (�10�3 mm).

4.5. Video Tracking and Force Calculation

Force data were collected over the range of listed frequencies,1, 2,
3 and 4Hz via video capture with the bot pillars facing the cam-
era. Locomotion of the bots was recorded with the pillars facing
the bottom of the dish at each of the frequencies. Passive tension
was collected through a still image captured with the bot laying
on its side, and the bending of center beam was measured. The
DMEM solution was changed in between each successive dual-
ring biobot. The pillars’ deflection and locomotion were tracked
using Tracker software.

Muscle force was calculated by the Euler–Bernoulli beam the-
ory using angle of deflection with small-angle approximation.

M ¼ �EI
d2w
dx2

, θðxÞ ≃ dw=dx (1)

Angle of deflection was attained by θ ¼ arcsin
�
δleg
lleg

�
, where δleg is

the deflected displacement per leg in side view and lleg the aver-
age of leg lengths due to the asymmetric structure of testbed.
Likewise, the position of bending was selected as half of the beam
length, x¼ L/2 and the moment caused by muscle force was
written M ¼ F � l, where l is the distance from beam to muscle
location. As the result, muscle force was calculated in the form of

F ¼ θEI
lðL=2Þ (2)

where I is the secondmoment of inertia of the beam and E stands
for Young’s modulus, which was measured to be 350 kPa.

4.6. Computational Modeling and Simulation

We computationally modeled the dual-ring biobot utilizing
Elastica, an open-source software that we have developed for
simulating complex, heterogeneous architectures made of soft
slender bodies.[43,44] These were modeled as Cosserat rods, a
mathematical description that captures the dynamics in 3D space
of 1D slender bodies, accounting for all modes of deformation
(bending, twisting, stretching, and shearing). A biohybrid walker
was then modeled as an assembly of Cosserat rods specialized to
muscular and scaffold elements. This assembly of rods was con-
structed via appropriate boundary conditions to account for struc-
tural connectivity and dynamic interactions among rods.
Furthermore, environmental effects such as gravity, buoyancy,
surface friction, and hydrodynamics were also characterized
and implemented in simulation. Further details relative to our
computational approach can be found in Supporting
Information and in the studies by Gazzola et al. and Zhang
et al.[43,44] The numerical solver Elastica is publicly available at
https://www.cosseratrods.org.

4.7. Cost of Transport

We evaluated the walking efficiency of our biobots using the
COT,[45] a dimensionless number that quantifies the energy

consumption of transporting an object over a certain distance.
As it is nondimensional, this number allows to meaningfully
compare locomotors of various nature across scales. The COT
is generally defined as

COT ¼ E
mgd

(3)

where E is the overall energy spent to transport a body of weight
mg over the distance d. As the metabolic efficiency of our system
is not readily available, we estimate E ≃ Ec � N, where Ec is the
muscle energy output provided during each contraction and N is
the number of contractions recorded over one minute. For con-
sistency, the distance d is also measured over 1min. Ec itself is
then quantified through the work

Ec ¼ FactCact=2

where Fact is the measured active force of the muscle and Cact is
the active muscle contraction estimated from the leg deflection
data. We assumed that the muscle force increases linearly from
rest before reaching its maximum value, hence the factor 1/2. We
note that since metabolic efficiency is not accounted for, our esti-
mate is optimistic, as underscored in the main text as well.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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